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Abstract

The pyrochlore lattice Heisenberg antiferromagnet has a massive classical
ground-state degeneracy. We summarize three approximation schemes, valid
for large spin length S, to capture the (partial) lifting of this degeneracy when
zero-point quantum fluctuations are taken into account; all three are related to
analytic loop expansions. The first is harmonic-order spin waves; at this order,
there remains an infinite manifold of degenerate collinear ground states, related
by a gauge-like symmetry. The second is anharmonic (quartic order) spin waves,
using a self-consistent approximation; the harmonic-order degeneracy is split,
but (within numerical precision) some degeneracy may remain, with entropy
still of order L in a system of L3 sites. The third is a large-N approximation, a
standard and convenient approach for frustrated antiferromagnets; however, the
large- N result contradicts the harmonic order at O (S) and hence must be wrong
(for large S).

1. Introduction

The defining property of a ‘highly frustrated’ magnet is massive classical ground-state
degeneracies; as in quantum Hall systems or Fermi liquids, the high density of (zero or) low-
energy excitations facilitates a rich variety of correlated states [1]. In three dimensions, the
pyrochlore antiferromagnet, realized in A;B,07 oxides or in B sites of AB,Oy spinels [2], is
considered to be the most frustrated case [3, 4]. We ask what is its ground state for quantum
Heisenberg spins with large S, which until now has been an unresolved question [5, 6].

In experimental pyrochlore systems, this degeneracy is most often broken by secondary
interactions (e.g. dipolar [7], Dzyaloshinskii-Moriya, or second-neighbour exchange) or by
magnetoelastic couplings [5, 8, 9]. Nevertheless, the pure model demands study as the basis for
perturbed models, and perhaps to guide the search for systems with exceptional degeneracies:
Heisenberg models can be cleanly realized by cold gases in optical traps [10].

The pyrochlore lattice consists of the bond midpoints of a diamond lattice, so the spins
form corner-sharing tetrahedra, each of which is centred by a diamond site. We take N; to be
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the number of spins (pyrochlore sites), and L to be the linear dimension. We have Heisenberg
spins, with S > 1, and nearest-neighbour couplings J;; = J, so

H=J) 8 S;=11) L2, (1.1)
(ij) o

where L, = Zi <o Si 1s a tetrahedron spin. (Here o, like other Greek indices, always runs over
diamond sites, and ‘i € o’ means that i is one of the four sites in tetrahedron «.) The classical
ground states are the (very many) states satisfying L, = 0 for all tetrahedra.

The obvious way to break the degeneracy is the correction energy E’ from perturbation
about some tractable limit, such as: (i) Holstein—Primakoff expansion (1/5), as in sections 2
and 3, below; (ii) large-N expansion, as in section 4; or (iii) expansion about the Ising limit of
the XXZ model [11]. But which degenerate states should we expand around? Commonly, one
just computes and compares E’ for two or three special states that have exceptional symmetry
or a small magnetic cell.

Instead, our approach is to express E’ as an effective Hamiltonian H™ [12], for a generic
classical ground state, often via crude approximations that have no controlled small parameter
yet result in an elegant form. For any H°", we seek (i) its (approximate) analytic form, (ii) its
energy scale, (iii) which spin pattern gives the minimum E}am, and (iv) how large the remaining
degeneracy is. The effective Hamiltonian has value beyond the possibility (as here) that it leads
us to unexpected ground states. First, we can model the 7 > 0 behaviour using a Boltzmann
ensemble exp(—pBHT) [12]. Second, starting from H°, more complete models may be built
by the addition of anisotropies, quantum tunnelling [13], or dilution [12]. Apart from analytics,
we also pursued the brute-force approach of fitting H° to a database of numerically evaluated
energies; minimizing the resulting 7' may well lead us to a new ground state not represented
in the database.

Our analytic approach was devised anew for each model; still, a common thread is to
manipulate the Hamiltonian until the Ising labels of the discrete (collinear) states (see below)
appear as coefficients in the Hamiltonian, and expand, even though there is no small parameter.
It is no accident that the effective Hamiltonians are always written in terms of loops [5, 11, 14]
in the lattice, or that the degeneracy-breaking terms have such small coefficients. Indeed, all
collinear states would be exactly symmetry-equivalent if our spins were on the bond-midpoints
of a coordination-4 Bethe lattice [15] (in place of the diamond lattice). (This same Bethe lattice
will also provide an excellent approximation for re-summing a subset of longer paths for our
loop expansions.)

In the rest of this paper, we summarize three calculations [16-20] for the 7" = 0 ordered
state of the large-S nearest-neighbour quantum antiferromagnet on the pyrochlore lattice. In
each case, a real-space expansion produces an effective Hamiltonian in terms of products
of spins around loops. Sections 2 and 3 are based (respectively) on the harmonic- and
quartic-order terms in the spin-wave expansion. In effect, we have a hierarchy of effective
Hamiltonians, each of which selects a small subset from the previous ground-state ensemble
yet still leaves a nontrivial degeneracy (entropy of O(L)). Section 4 is based on large- N mean-
field theory, an alternative way to see anharmonic effects, where the additional limit is taken
of a large length for the Sp(N) ‘spin’; the large-N loop expansion is different, but gives
similar in form to the anharmonic case. Along the way (sections 2.3 and 3.3) we comment
on related models, such as the kagomé or checkerboard antiferromagnets, as well as field-
induced magnetization plateaus. Finally, a conclusion (section 5) speculates on the prospects
of addressing spin-disordered ground states.
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2. Harmonic effective Hamiltonian

For sufficiently large S, an ordered state is expected' as spin fluctuations become self-
consistently small [18, 22]. The first way the classical degeneracy may be broken is the total
zero-point energy of the harmonic spin-wave modes:

Eharm({ﬁi}) = Z %hwmv (21)

where oy, are the frequencies of all spin-wave modes fluctuating around a particular classical
ground state S; = Sn; with unit vectors {f;}. (Strictly speaking, the constant term in (2.2a),
below, should also be counted with Eham.) This is implicitly a function of the local classical
directions {n;}, and can be considered an effective Hamiltonian that breaks the classical
degeneracy. In any exchange-coupled system, Ep,m is expected to be a local minimum in
collinear [23, 24] states, such that all spins are aligned along the same axis (call it Z), thus
n; = 1;Z: we assume this from now on?. From L, = 0, every tetrahedron « has two up and
two down spins.

2.1. Holstein—Primakoff (1/S) expansion and spin-wave modes

Equation (2.1) is the expectation of just one term in the Holstein-Primakoff expansion of the
Hamiltonian with 1/§ as the small parameter: H = Ejass — J SNy + Hharm + Hquare + O (S -1,
where E s 1s the classical (mean-field) energy, and

Hhmm=f20?+f20i-aj; (2.2a)
i (ij)

J 2, 1 2 2
Hauart = 152 % ninjo;o; — Eai -0 (0; +aj). (2.2b)

Here J = J (1 4+ 1/28); henceforth, we fix J = 1. We choose to expand in spin deviation
operators a; = (07", 0;"), defined so that a; = (n;07 +io;") /+/25 is the standard boson operator
that lowers the component of spin S; parallel to n;. The harmonic term (2.2a) only appears
to be independent of the {#,}, which label distinct classical ground states; the dependence is
hidden in the commutation relations, [o}", 0}7] = 1851;8;;. The anharmonic terms (2.2b) will be
the basis for section 3.

For any classical ground state, half of the modes are ‘generic zero modes’ [17] and have
wm = 0. The other half are ‘ordinary’ modes. Finally, ‘divergent’ modes are special ones
with divergent fluctuations; these occur where the generic-zero and ordinary branches become
linearly dependent. It can be shown in real space that a divergent mode’s support can be
bounded to an irregular slab normal to a (100) coordinate axis [17]. Hence the divergent modes
have an O (L) degeneracy, and in Fourier space are restricted to lines in (100) directions. The
elastic neutron structure factor should have sharp features along divergence lines. As we shall
see in section 3, divergent modes dominate the anharmonic corrections to the energy.

' This does not contradict the evidence for spin-disordered (spin liquid or valence bond crystal) states at § =
1/2 [21, 4], or in the classical case [3].

2 Footnote 13 of [16] noted, in the spirit of [24], that ) a)rzn is the same for any classical configuration. But in collinear
states, Zw4 attains a maximum, which makes it plausible that Eyypm Z |w| has a minimum. This was confirmed,
numerically, for the pyrochlore model in [17].
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2.2. Trace expansion and loop effective Hamiltonian

The {wn} in (2.1) are the same as the eigenfrequencies of the (linearized) classical
dynamics [3, 16], which reduces to

8Ly =—SJ ) jtaph x SLg. (2.3)
;

This defines an important matrix p with elements qg = 1ip), where i (o, B) is the pyrochlore
site that links neighbouring diamond lattice sites « and B; o = 0if @ = B or the diamond
sites are not neighbours. (In [17], the same matrix is derived more rigorously from the quadratic
form in (2.2a).) Thus, via the trick of using tetrahedron spins, the dynamical matrix is the
classical Ising configuration {n;}. If we can only massage the formulation so it appears as a
perturbation, an expansion will generate the desired effective Hamiltonian.

The eigenvalues of p? are (fiwy,/S)?, so the harmonic energy (2.1) is

Enam({n;})) = JSTr ([n?1'?). (24)

We can formally Taylor-expand the square root in (2.4) about a constant matrix A1 in powers of
(n?/4 — A1)". (Naively, A = 1 since the diagonal of u?/4 is the identity; actually, larger A is
needed to account for additional contributions o< 1 from higher powers of u.) After collecting
powers of i, we have

2 1/2 00
Eharm = ST]“ [Al + (l’l’? — Al)} = S ZCzkA_(k—]/z) Tr Mzk (2.5)
k=0

where the coefficients {cy;} have closed expressions. Now, Tr(u?) is a sum over all of the
diagonal terms of u?*, i.e. a sum over products of Kqp along all of the closed paths—on the
diamond lattice—with 2k steps. These paths may retrace themselves, which gives trivial factors
77,~2 = 1; but steps that go once around a loop contribute a configuration-dependent factor %1
equal to the product of Ising spins around that loop. To assure convergence of the sum in (2.5),
A > 1.41s needed.

Thus, we can re-sum (2.5) to obtain an effective Hamiltonian

H = EgNs + Ke®6 + KgDg + - - -, (2.6)

harm

where @, is the sum over all products [ ] #7; taken around loops (without acute angles) of 2/
spins in the pyrochlore lattice.

Most of the retraced path terms are in one-to-one correspondence with paths on the
coordination-4 Bethe lattice. This gave a quite accurate approximation for the constant term
Ey, as well as for the contributions from higher powers of u that re-sum to give each Ky
coefficient in (2.6). Then, expanding (2.5) up to the [ = 30 term [17] (i.e. loops of length
<60) and extrapolating to [ = 0o, we obtained the coefficients in (2.6): Ey = —0.5640 NS,
K¢ = 0.0136 S, K3 = —0.0033 S. To test (2.6), we numerically computed the zero-point
energy (2.1) for many collinear ground states. As confirmed by figure 1(a), Hﬁgfrm represents
the energy well.

2.3. Gauge-like symmetry, ground-state degeneracy, and discussion

The exact harmonic energy admits ‘gauge-like’ transformations, relating one Ising
configuration to another: 771/‘(0[, g = TaTpNi@.p) where 1, = %1 arbitrarily on every diamond
site. In matrix notation, u’ = Tt !, where T = diag({t,}). Then g’ is similar to g and has
the same eigenvalue spectrum, s0 Eham({7i}) = Enham({n:}). These are not literally gauge
transformations, since the classical ground-state condition must independently be satisfied:

4
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Figure 1. Numerical results for degeneracy-breaking energy versus effective Hamiltonian written
in terms of loop; each point represents a different configuration of Ising spins {#;}. (a) Harmonic
spin waves (section 2). (b) Quartic spin waves (section 3); only m-flux states (harmonic ground
states) are included. (c) Large-N /large-S approximation (section 4).

(This figure is in colour only in the electronic version)

namely, Zi <o Ni = 0in every tetrahedron. Since Epam is gauge-like invariant, its value can
only depend on gauge-like invariant combinations of {7;}, i.e. loop products, which explains
why (2.6) has exactly the form of a Z, (Ising) lattice gauge action.

It follows that there are many (degenerate) harmonic ground states; as (2.6) implies
and the numerical calculation confirmed, they are all the (collinear) configurations in which
the loop product is [[n; = —1 around every hexagon. We call these w-flux stafes in the
language of [6]. The divergent modes of section 2.1 provide a trick to construct and count
gauge-like transformations and hence the ground-state degeneracy. Namely, any gauge-like
transformation can be factorized into two, involving the even and odd diamond lattice sites;
these transformations in turn correspond one-to-one with a basis of divergent modes. In this
fashion, an upper bound [17] on the ground-state entropy was obtained, of order L In L. On the
other hand, a lower bound of order L is easily obtained by explicitly constructing a subfamily of
m-flux states by stacking independent layers of thickness a /4 in (say) the [001] cubic direction.
Each layer is a set of chains running in the [110] or [110] direction, with spins alternating both
along and transverse to the chains, so there is a twofold choice for each layer [16].

Two important loose ends of our harmonic calculation are:

(i) It was not proven, but only checked numerically [5, 17], that collinear states are local
minima of the harmonic zero-point energy (2.1) as a function of classical orientations; nor
was it proven that they are the only stationary points.

(i) We do not yet understand the full set of harmonic (77 -flux) ground states for the pyrochlore:
only a special subset are given by the layer stacking construction [17].

The (harmonic-order) loop expansion is easily adapted to similar Heisenberg
antiferromagnets that support collinear ground states, such as the checkerboard lattice [6].
More interesting are the kagomé or pyrochlore antiferromagnet at a large field ‘magnetization
plateau’ [11, 17]: in that case, the signs get reversed in (2.6). (In the pyrochlore case, with
M1 tetrahedra, Hﬁgfrm now favours a positive loop product s = +1.) In each case, the
ground-state entropy again comes out O (L).

Hassan and Moessner [25] got corresponding results for the H{T =~ of kagomé
antiferromagnets (including noncollinear states) in a (variable) field, uncovering further
subtleties of the degeneracies. Also, Bergman et al [11] extended the derivation of (2.6) to

their easy-axis limit.
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3. Anharmonic spin-wave theory

At harmonic order, the pyrochlore antiferromagnet has wriggled loose from our efforts to pin
it down to a unique ground state. Evidently, we must try again using the anharmonic terms.
As in the kagomé case, brute-force perturbation theory—taking the expectation (Hgua) in the
ground state of Hp,m—Tfails, since the harmonic fluctuations are divergent. Instead, we must
construct a reasonable ground state by using the anharmonic terms self-consistently.

3.1. Self-consistent decoupling

The quartic term Hgua can be decoupled in a standard fashion: in each quartic term, simply
pair the operators and replace one of the pairs by its expectation, in every possible way. The
result is a ‘mean-field’ Hamiltonian—quadratic like Hp,m, but now all eigenfrequencies are
nonzero (except the Goldstone mode) and all divergent modes have been regularized. One can
interpret its ground-state wavefunction variationally as being the best harmonic-oscillator state
for the actual Hamiltonian. The effective nearest-neighbour interactions are modified as

Jij = Jij +8Jij, 8Jij = —% |:% (Gii + ij) — nianiji| . 3.1
Here, Gij = (0;0}) = (0] 0}) is the correlation function of fluctuations, which we can
evaluate numerically. The anharmonic energy depends on a completely different set of modes
than did the harmonic energy. In the light of (3.1), Egay is dominated by the divergent (at
harmonic order) modes introduced in section 2.1; those are zero modes, which do not contribute
to Enarm at all (recall (2.1)). In principle, then, our recipe is to guess a regularized Hamiltonian,
compute its correlations {G;;}, and insert these in (3.1) to get a new Hamiltanian; then, iterate
until this converges.

3.2. Mean-field Hamiltonian and self-consistency

We need to understand the {G;;} due to divergent modes. These modes simultaneously enjoy all
properties of both ordinary and generic zero modes (since these branches are becoming linearly
dependent). We use the fact that any ordinary mode [17] satisfies

1
vy = —=m Y ul™, 3.2
(i) === Z J (32)
where {ufx’")} is the eigenvector of {i4g} having the same eigenvalue w,, and where the sum
runs over both diamond sites linked through pyrochlore site i.

Note that as § — 00, Hquart < Hparm, S0 we approach a pure harmonic Hamiltonian. In
this limit the modes are almost gauge-like-invariant (the regularization breaks the invariance).
We may assume that the lower-order term E},my, has been minimized, i.e. a w-flux state. Any
such state is specially uniform, in that all hexagons are the same, modulo the gauge-like
symmetry, and hence all bonds and sites are equivalent. Thus, it turns out, the fluctuations of the
diamond-site modes in (3.2) have correlations with a simple form parametrized by constants gy,
g2, and g3: (u2) = go (the same on every site); (uytty) = Napnpy g2 for the second neighbour
(ar, ) on the diamond lattice, having 8 as their common neighbour (here g» < 0); and (by
bipartiteness) (uqug) = O for the nearest neighbour («, 8). Inserting into (3.2), we find that
the correlations are G;; = go and G;; = %[771' 1n;&o + g2]. Substituting this into (3.1) finally
gives

€
(304 minjlgal) = =80 — =mim;. (3.3)

8Jij =
J 8

1
AR
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The constant is absorbed in a re-renormalization to J* = J (1—=58J%); the key (small) parameter
is €, which breaks the gauge-like invariance and cuts off the divergences.

Thus, the mean-field Hamiltonian is well approximated by the simple form (3.3), which
in effect says ‘strengthen the satisfied bonds relative to the unsatisfied bonds’. That is also
the simplest possible form of a variational Hamiltonian that is consistent with the local spin
symmetries. In practice, we simply assumed (3.3) and computed g»(€), so the problem reduces
to one self-consistency condition, €/8 = [gx(€)|/2S>. It turns out that G;; ~ g» ~ Slne,
hence € ~ InS/S and finally Equ¢ ~ (In S)2. (The log divergence is a consequence of
the strongly anisotropic momentum dependence of the modes near the divergence lines in
reciprocal space.)

3.3. Effective Hamiltonian, numerical results, and discussion

We calculated the quartic energy numerically for various periodic states, grouped in families
within which the states are gauge-like equivalent. They had unit cells ranging from four to 32
sites, and five gauge families were represented, in particular the w-flux states (ground states
of H{ ). When the result was fitted to an effective Hamiltonian, all but a few per cent of
the anharmonic energy is actually accounted for by gauge-invariant terms, of the same form
as (2.6). The gauge-dependent energy differences between states are much smaller in the 7 -flux
state, and larger in a gauge family where the gauge-invariant loops are most inhomogeneous.
We searched for the optimum among (we believe) all possible w-flux states in the several unit
cells that we used (with Ny up to 192 sites).
We performed a numerical fit to an effective Hamiltonian of the form

H = Co(S)Ps + Cs(S)Ps + Cro(S)Pro. (3.4)

where P is equal to the number of loops of length / composed solely of satisfied bonds (i.e. with
alternating spins). Here C¢(100) ~ —0.0621, Cg(100)/N; ~ —0.0223. (These energies were
fitted to (In §)? dependence [18], as implied by the analytics; but our range of S values is too
small to distinguish from some other power of In §.) The scatter plot in figure 1(b) shows that
the fit (3.4) captures the leading-order dependence on the Ising configuration that splits the
harmonic-order degeneracy.

To explain (3.4) analytically, note that the quartic energy is proportional to the energy
of (3.3), evaluated as if it were harmonic. This can be handled by a small generalization of
the loop expansion of section 2. The leading state-dependent term turns out to be Pg (with
Cs o €2), confirming analytically a form that we had originally conjectured empirically.

The highest and lowest energy states of (3.4) have, respectively, the smallest and largest
numbers of hexagons with spin pattern 11| 1] [20]. The maximum fraction (1/3) of such
alternating hexagons is found in a set of states constructed by layering two-dimensional slabs.
Within our numerical accuracy, these are degenerate for any S. These stacked states have the
same number of alternating loops of all lengths up to 16 (we checked), indeed (we believe) up
to 26. We conjecture a tiny splitting of these states at that high order, maybe even smaller than
the similar case of our large-N calculation (see section 4.3).

We also calculated the anharmonic effective Hamiltonian for the (planar) checkerboard
lattice, a tractable test-bed for pyrochlore calculations [3, 6, 26]. But, inescapably, two bonds
of every ‘tetrahedron’ (appearing as diagonals of a square) have no symmetry reason to be
degenerate with the other four bonds. So, in the anharmonic calculation, the diagonal bonds
renormalize to be weaker than the rest, and a unique ordered state is trivially obtained.

Bergman et al [11] developed a quite different derivation of effective Hamiltonians—
nicely complementary to ours—by expanding around the Ising limit. Their H*'s have a form

7
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quite like (3.4)—i.e. the terms count the number of loops with different Ising configurations—
and identifying the ground states is comparably difficult. It would have been valuable if we had
generalized our anharmonic calculation to the magnetization-plateau case (see end of section 2),
to compare with the results of [11]. (The complication of this generalization is that (3.3) will
get a term with 7; 4 n;, necessitating a second variational parameter in addition to €.)

One naively, but wrongly, expected a similar story for the Heisenberg quantum
antiferromagnet on the pyrochlore lattice as on the (previously studied) kagomé lattice [22, 27].
There, spin-wave fluctuations selected coplanar (not collinear) configurations as local minima;
since all bond angles are 120°, all coplanar states were degenerate to harmonic order, unlike
our result in section 2.3. Due to the noncollinearity, the counterpart of (2.1) had a term Hcypic,
third order in {o*/”}, and O(H?Z,,.) contributed the same order as O(Hquar) [22, 27]. A
consequence was distant-neighbour terms in the effective Hamiltonian [27] (which selected
the unique ‘+/3 x /3’ state). A second consequence of noncollinearity was that all generic
zero modes—an entire branch—were divergent, and hence in the kagomé case, the anharmonic
energies (and squared spin fluctuations) both scaled as O (5%/3), much larger than the (In S )2 of
the pyrochlore case.

4. Large-N approach to large-S limit

Besides the spin-wave expansion, there is another systematic approach to go beyond basic
mean-field theory: Schwinger bosons. Each (generalized) spin has Sp(N) symmetry and is
written as a bilinear in boson operators {b;,,,}, where ¢ = 1, | and m runs over N flavours;
the representation is labelled by x which generalizes 25. The physical case is SU(2) = Sp(1),
but the N — oo limit can be solved exactly and is often successful as a mean-field theory or
the starting point of a 1/N expansion [28]; this is popular as an analytic approach to S = 1/2,
in the small k limit, since exotic disordered ground states can be represented as well as ordered
ones [28]. In our work [19] (with Prashant Sharma as the major collaborator, who initiated us
into this approach) we instead pursued the large- N approach for large «. This gives an easier
recipe for ground-state selection compared to the spin-wave approach, since in large-N the
degeneracies are usually broken at the lowest order [28].

But which saddle point to expand around? In the pyrochlore antiferromagnet, there are
exponentially many, corresponding to the same collinear states as in the spin-wave expansion
and labelled by the same Ising variables {n;}. Prior studies just investigated high symmetry
states, or every state in a small finite system [28, 26]. We pursue instead the effective
Hamiltonian approach.

4.1. Large-N mean-field theory

. . L , At i T

Exchange interactions are quadratic in Avalence bond’ operators Q;; = b;, b, ,,—b; 1.mb it
and in the boson number operator NF = Za,m qu,mbid,nv (Here m < N is a flavour
index in the large-N generalization, and ¢ = 1, |.) For the physical SU(2) spins, we have

Si-S; — I\A/}’]V;’ - ij Q,j. A decoupling quite generally gives
Hspoo =3 (N|Qi‘,-|2 + 0,0+ H.c.) + (1(7}’ - NK) @.1)
(ij) i

with the classical numbers Q;; = (Qi‘,-) /N. The Lagrange multipliers A;, which (it turns out)
have the same value & = 4« on every site, enforce the physical constraint that the boson number
is exactly « (the generalized spin length) at every site. We want the first nontrivial term in a
1/k (semiclassical) expansion.

8
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The desired ordered state is a condensation of bosons, (bjs.,) = ~N&jmXis. The
mean-field ground-state energy, obtained via a Bogoliubov diagonalization, is E‘S‘;‘(N) =
Egll;‘zjv) + Egpnvy: the first term is the same in every classical ground state. The quantum
term is the bosons’ zero-point energy:

N
Espv) = ({Qijh) [Tr\/)»zl -Q'Q- Ns)»] . (4.2)

In a collinear classical state, Q;; = «(n; — n,)/2, i.e. L« for every satisfied bond but zero for
unsatisfied bonds.

4.2. Loop expansion and effective Hamiltonian

We have manipulated Eg,(y) into the form of a trace of a matrix square root, as in (2.5) for
the harmonic spin-wave energy—but this matrix Q connects pyrochlore sites i, whereas
in section 2 connected diamond-lattice sites. A Taylor expansion of (4.2) gives the desired
effective Hamiltonian,

N i 2m + D

Esp0 = =5 2 33ty

> Tr (Q'Q)". 4.3)
m=1

Evidently Tr[(Q7Q/«?)™] is just the number of closed paths of length 2m on the network
of satisfied bonds; this network is bipartite, so every nonzero element of Q'Q is k2. Those
paths that eventually retrace every step can be put in one-to-one correspondence with paths
on the Bethe lattice (more precisely, a ‘Husimi cactus’ graph [19]). They contribute only a
constant factor independent of {7;}, as do paths decorated by additional loops that lie within
one tetrahedron. The effective Hamiltonian is a real-space expansion in loops made of valence
bonds:

Nk / ~ ~ o~ - o~
Hgfpf(N) = 7 (CQNS + CePe + CgPg + - - ) (4.4)

where Py, is the number of nontrivial loops of length 2/ with alternating spins, on (now) the
pyrochlore lattice. The coefficients {Cy} were given as a highly convergent infinite sum, hence
could can be evaluated to any accuracy: we got Co = —3.482 x 1073, Cg = —3.44 x 1074,
and C~'21+2 / C‘z] ~ 1/10, so short loops dominate.

Our large-N loop expansion can be extended to all noncollinear classical ground
states [19, 20], with the form of (4.4) but with generalized Py1. It can be applied to the kagomé
and checkerboard lattices [19], giving the usual answers for their ground states [28, 26].

4.3. Numerical results and discussion

We calculated the self-consistent energy for many different collinear classical ground states,
obtained by a random flipping algorithm described in [17]. Equation (4.4) is an excellent fit of
the state-dependent energy even with just the 2/ = 6 and 8 terms, as shown in figure 1(c). An
independent numerical fit agreed to within 1% for C‘G and 10% for C‘g [19].

We performed classical Monte Carlo simulations of the Ising model with (4.4) as its
Hamiltonian to search systematically for the ground state, using large orthorhombic unit cells
with 128 to 3456 sites. The optimum was found for a family of nearly degenerate states built
as a stack of layers, so the entropy of this family is O(L). (Each layer has thickness 3a /4 and
there are four choices per layer, but this is not the family found in section 3.) These states are
a subset of those with the maximum value 756 = N;/3—i.e. one third of all N hexagons are

9
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214t l—and Py = 23N,/6. However, it turns out that a tiny energy difference ~10~7 per
spin, corresponding to the 2/ = 16 term in (4.4), splits these states and selects a unique one.

Let us check our results against the spin-wave approach of section 2. The harmonic term of
the 1/ expansion must dominate at sufficiently large S, so the physical (SU (2)) semiclassical
ground state must be a ground state of that term, namely a ‘w-flux’ state. Yet the ground states
of (4.4) are not m-flux states, and therefore cannot possibly be the true ground state: the 1/N
expansion has let us down. Nevertheless, if Ej,y values are compared within the ‘gauge’
family of w-flux states, the ordering of these energies is similar to the quartic spin-wave result
(section 3).

5. Conclusion

The trick of writing the zero-point energy as the trace of a matrix (equations (2.4) and (4.2))—
and, for the spin-wave expansions, transposing to the diamond lattice (equations (2.3)
and (3.2))—enabled an (uncontrolled) expansion giving the effective Hamiltonian in terms
of Ising spins as a sum of over loops. In each case, there was a degenerate or nearly
degenerate family of states with entropy of O(L). The practical conclusion is clear, at least:
beyond harmonic order, energy differences are ridiculously small and would not be observed
in experiments.

Is it, then, possible to realize a disordered superposition of these states, once we add to
our effective Hamiltonian the ‘off-diagonal’ terms, representing the amplitudes for tunnelling
between collinear states? (Compare [13] for the kagomé case and [11] for the pyrochlore.)
Unfortunately, the O (L) entropy of ground states implies that a transition from one to another
requires flipping O (L?) spins, so the tunnel amplitude is exponentially small as L — oo.

One also noticed that collinear selection (mentioned before section 2.1) provides a different
route compared to ‘spin ice’ to realize an effective Ising model in a pyrochlore system; when
these collinear states are allowed tunnellings (i.e. ring exchanges), won’t we realize the ‘U (1)
spin liquid’ of [29]? To stabilize a quantum superposition, the tunnel amplitude should be
larger than the energy splittings among collinear states, but smaller than the energy favouring
collinearity—yet in the pyrochlore, both energy scales are comparable (of harmonic order,
i.e. relative order 1/S). The kagomé lattice—or in d = 3, the garnet lattice of corner-sharing
triangles—is far more promising for disordered spin states, since its harmonic-order ground
states have extensive entropy.
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